

Journal of Organometallic Chemistry 628 (2001) 91-98

www.elsevier.nl/locate/jorganchem

Synthesis and reactions of the dichloro bis(3-hexyne) complex $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$

Mutlaq Al-Jahdali, Paul K. Baker *

Department of Chemistry, University of Wales, Bangor, Gwynedd LL57 2UW, UK Received 22 January 2001; accepted 27 February 2001

Abstract

Reaction of $[WCl_2(CO)_3(NCMe)_2]$ (prepared in situ by reacting $[WI_2(CO)_3(NCMe)_2]$ with two equivalents of NaCl in acetone) with an excess of EtC_2Et in CH_2Cl_2 gives the bis(3-hexyne) complex $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1). Equimolar quantities of 1 and L {L = NPh₃, PPh₃, L^{Mo} or L^W [MI_2(CO)_3{MeC(CH_2PPh_2)_3-P,P'}] (M = Mo, L^{Mo}; W, L^W)} react in CH_2Cl_2 to give the acetonitrile replaced products, $[WCl_2(CO)L(\eta^2-EtC_2Et)_2]$ (2 \rightarrow 5), in good yield. Reaction of 1 with L₂ {L = PPh₃, L^{Mo}, L^W, L₂ = Ph_2P(CH_2)_nPPh_2 (1,3,4,6), *cis*-Ph_2PCH=CHPPh_2} in CH_2Cl_2 at room temperature afforded the mono(3-hexyne) complexes, $[WCl_2(CO)L_2(\eta^2-EtC_2Et)]$ (6–13). Treatment of 1 with two equivalents of P(OR)₃ {R = Et, ¹Pr} in diethyl ether gives $[WCl_2(CO)\{P(OR)_3\}_2(\eta^2-EtC_2Et)]$ (14 and 15), respectively. Equimolar amounts of 1 and 2,2'- bipyridyl (bipy) yields the cationic complex [WCl(CO)(bipy)(\eta^2-EtC_2Et)_2]Cl (16). Reaction of equimolar quantities of 1 and NaS_2CNR₂·3H₂O (R = Me, Et) in CH₂Cl₂ at room temperature affords the mono-chloro complexes [WCl(CO)(S₂CNR₂)(\eta^2-EtC_2Et)_2] (17 and 18). © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Tungsten; Alkyne; Carbonyl; Acetonitrile; Tertiaryphosphine

1. Introduction

Since our initial report in 1988 of the synthesis of the dimeric mono-alkyne complexes $[{M(\mu-I)I(CO)} (NCMe)(\eta^2 - RC_2R')$] (M = Mo, W; R = R' = Me, Ph,CH₂Cl; R = Ph, R' = Me, CH₂OH; R = Me, R' = PhS, *p*-tolS) [1] and the bis(alkyne) complexes, [{Mo(μ -I)I(CO)(η^2 -MeC₂Me)₂] and [MI₂(CO)(NCMe)(η^2 - $RC_{2}R'_{2}$] (M = Mo, W; R = R' = Ph; R = Me, R' = Ph; for M = W only; R = R' = Me, CH_2Cl , *p*-tol; R = Ph, $R' = CH_2OH$ [2], we have developed an extensive iodoalkyne chemistry of molybdenum(II) and tungsten(II) [3-9]. More recently, in 1994 [10], we have described the synthesis and reactions with donor ligands of the dibromo-bis(2-butyne) complex, [WBr₂(CO)(NCMe)- $(\eta^2 - MeC_2Me)_2$]. In 1989 [11], we described the synthesis and characterisation of the mixed-halide complexes $[\{W(\mu-Br)I(CO)(NCMe)(\eta^2-RC_2R)\}_2]$ (R = Me, Ph, CH₂Cl) and [WBrI(CO)(NCMe)(η^2 -RC₂R)₂], and very

Recently [19], we have described the in situ synthesis of the seven-coordinate dichloro-complex $[WCl_2(CO)_3-(NCMe)_2]$ by the reaction of $[WI_2(CO)_3(NCMe)_2]$ with two equivalents of NaCl in acetone. In this paper, we describe the synthesis of the bis(3-hexyne) complex $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1), by the reaction of $[WCl_2(CO)_3(NCMe)_2]$ (prepared in situ) with 3-hexyne. The reactions of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1) with neutral and anionic donor ligands is also described.

^{*} Corresponding author. Tel.: +44-1248-351151; fax: +44-1248-370528.

E-mail address: chs018@bangor.ac.uk (P.K. Baker).

recently in 1998 [12], we described a series of mixedchloroiodo alkyne complexes, including the X-ray structural characterisation of the cationic complex, $[WCl(CO)(2,2'-bipy)(\eta^2-MeC_2Me)_2]I.$ Hitherto, far fewer dichloro alkyne complexes of molybdenum(II) and tungsten(II) have been reported. Templeton and co-workers [13], Brisdon et al. [14], Nielson and coworkers [15], and Mayr et al. [16-18] have described some new dichloro alkyne complexes, following which, $[WCl_2(CO)(L_2)(\eta^2 - PhC_2Ph)]$ (L = PMe₃, PMe₂Ph) [14], $[WCl_2(CO)(PMe_3)_2(\eta^2 - PhC_2NH'Bu)]$ [15], $[WCl_2(CO) (PMe_3)_2(\eta^2 - PhC_2R)] \{R = OH, OC(O)C_6H_4OMe-4\} [17]$ and $[WCl_2(=CHPh)(PMe_3)_2(\eta^2-PhC_2Ph)]$ [18], have been crystallographically characterised.

⁰⁰²²⁻³²⁸X/01/\$ - see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: S0022-328X(01)00763-X

Fig. 1. Proposed structure of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1).

2. Results and discussion

2.1. Synthesis and characterisation of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1)

Reaction of [WCl2(CO)3(NCMe)2] (prepared in situ as described previously [19]), with an excess of 3-hexyne eventually gives the new bis(3-hexyne) complex $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1), which has been characterised by IR (Table 2), ¹H- and ¹³C-NMR spectroscopy (Tables 3 and 4). Complex 1 is very much less stable than its diiodo analogue $[WI_2(CO)(NCMe)(\eta^2 EtC_2Et_2$ [20], and hence it was very difficult to obtain satisfactory elemental analysis results, even after many repeated attempts of preparing the complex from both reaction of $[WCl_2(CO)_3(NCMe)_2]$ (prepared in situ) with EtC₂Et or treating $[WI_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ with two equivalents of NaCl. It can be used for reactions if used very quickly, but during the preparation of a sample for elemental analysis, it decomposes before the pure sample is analysed. Complex 1 is also less soluble in chlorinated solvents and diethyl ether and hydrocarbon solvents compared to its diiodo analogue [20]. The IR spectrum for 1 (CHCl₃) has a strong carbonyl band at 2079 cm⁻¹, which is at higher wavenumber compared to $[WI_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ at 2056 cm⁻¹. In view of the similar IR, ¹Hand ¹³C-NMR spectral properties of the dichloro complex **1** to the related diiodo alkyne complexes $[WI_2(CO)(NCR)(\eta^2-R'C_2R')_2]$ (R = Me, R' = Me, Ph [2]; R = Bu^t, R' = Me [21]; R = Me, R' = Ph [22]), which have all been crystallographically characterised, it is very likely that the structure of **1** will be very similar as shown in Fig. 1.

The room temperature ${}^{13}C{}^{1}H$ -NMR spectrum (CDCl₃) for complex 1 (Table 4), has alkyne contact carbon resonances at $\delta = 162.43$ and 167.50 ppm, which from correlation of Templeton and Ward [23] suggests that the two 3-hexyne ligands are donating a total of six electrons to the tungsten, which also enables complex 1 to obey the effective atomic number rule. The rest of this paper describes the reactions of the versatile complex, [WCl₂(CO)(NCMe)(η^2 -EtC₂Et)₂] (1) with both neutral and anionic donor ligands. These results are summarised in Scheme 1.

2.2. Reactions of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1) with one equivalent of L to give $[WCl_2(CO)L(\eta^2-EtC_2Et)_2]$ (2–5)

Reaction of equimolar amounts of 1 and L {L = NPh₃, PPh₃ or [MI₂(CO)₃{MeC(CH₂PPh₂)₃-*P*,*P'*}] (M = Mo or W)} in CH₂Cl₂ at room temperature gives the acetonitrile exchanged products, [WCl₂(CO)L(η^2 -EtC₂Et)₂] (2–5). All the new complexes have been characterised in the normal manner (see Tables 1–3) and ¹³C-NMR for complex 2 (see Table 4). Complex 2 is less stable, and more soluble than the phosphine


```
and cis-Ph<sub>2</sub>PCH=CHPPh<sub>2</sub>
(iii) 2P(OR)<sub>3</sub>, (R = Et, <sup>i</sup>Pr)
(iv) bipy
```

```
(v) NaS_2CNR_2.3H_2O(R = Me, Et)
```

Table 1 Physical and analytical data $^{\rm a}$ for the chlorocarbonyl 3-hexyne tungsten complexes (1–18)

Number	Complex	Colour	Yield (%)	Analysis (%)		
				C	Н	N
1	$[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$	Green	39	37.2 (36.9)	3.6 (4.7)	1.0 (2.8)
2	$[WCl_2(CO)(NPh_3)(\eta^2-EtC_2Et)_2]$	Green	64	54.3 (53.8)	4.9 (5.1)	2.6 (2.0)
3	$[WCl_2(CO)(PPh_3)(\eta^2-EtC_2Et)_2]\cdot CH_2Cl_2$	Green	48	47.9 (48.3)	4.4 4.7	
4	$[WCl_2(CO)(L^{Mo})(\eta^2-EtC_2Et)_2],$	Brown	39	45.1 (45.4)	4.7 (4.0)	
	$L^{Mo} = [MoI_2(CO)_3 \{MeC(CH_2PPh_2)_3 - P, P'\}]$					
5	$[WCl_2(CO)(L^W)(\eta^2 - EtC_2Et)_2],$	Green	62	42.3 (42.9)	3.7 (3.7)	
	$L^{W} = [WI_{2}(CO)_{3} \{MeC(CH_{2}PPh_{2})_{3} - P, P'\}]$					
6	$[WCl_2(CO)(PPh_3)_2(\eta^2-EtC_2Et)]$	Green	41	58.9 (58.1)	4.5 (4.5)	
7	$[WCl_2(CO)(L^{Mo})_2(\eta^2-EtC_2Et)]$	Brown	79	46.6 (45.9)	4.3 (3.6)	
8	$[WCl_2(CO)(L^W)_2(\eta^2-EtC_2Et)]$	Green	30	42.4 (42.9)	3.7 (3.3)	
9	$[WCl_2(CO)(dppm)(\eta^2-EtC_2Et)]$	Green	53	50.9 (51.2)	4.6 (4.3)	
10	$[WCl_2(CO)(dppp)(\eta^2-EtC_2Et)]\cdot Et_2O$	Green	36	53.5 (53.6)	5.0 (5.4)	
11	$[WCl_2(CO)(dppb)(\eta^2-EtC_2Et)]$	Green	17	49.1 (49.3)	5.0 (4.6)	
12	$[WCl_2(CO)(dpph)(\eta^2-EtC_2Et)]\cdot CH_2Cl_2$	Green	17	51.0 (50.5)	5.0 (4.9)	
13	$[WCl_2(CO)(cis-dppethy)(\eta^2-EtC_2Et)]$	Green	80	52.9 (52.1)	4.8 (4.2)	
14	$[WCl_2(CO){P(OEt)_3}_2(\eta^2-EtC_2Et)]\cdot CH_2Cl_2$	Green	63	30.7 (31.1)	5.4 (5.5)	
15	$[WCl_2(CO){P(O'Pr)_3}_2(\eta^2-EtC_2Et)]$	Green	69	39.3 (38.4)	6.4 (6.7)	
16	$[WCl(CO)(2,2'-bipyridyl)(\eta^2-EtC_2Et)_2]Cl$	Green	49	42.1 (42.4)	4.4 (4.7)	4.9 (4.7)
17	$[WCl(CO)(S_2CNMe_2)(\eta^2-EtC_2Et)_2]\cdot CH_2Cl_2$	Green	39	31.3 (31.7)	4.3 (4.9)	3.2 (3.8)
18	$[WCl(CO)(S_2CNEt_2)(\eta^2-EtC_2Et)_2]$	Green	58	36.3 (36.5)	5.1 (5.5)	3.4 (3.4)

^a Calculated values in parentheses.

Table 2 Infrared data ^a for the chlorocarbonyl 3-hexyne tungsten complexes (1–18)

Complex	$v(C=O) (cm^{-1})$	$v(C \equiv C) (cm^{-1})$	$v(C=N) (cm^{-1})$
1	2079(s)	1630(w)	2305(w)
2	2081(s)	1587(w)	
3	2064(s)	1644(w)	
4	2075(s); 2044(s); 1970(s); 1934(s)	1619(w)	
5	2079(s); 2034(s); 1958(s); 1905(s)	1609(w)	
6	1995(s)	1640(w)	
7	2044(s); 1972(s); 1938(s); 1904(s)	1622(w)	
8	2038(s); 1990(s); 1962(s); 1907(s); 1901(s)	1625(w)	
9	1936(s)	1601(w)	
10	1944(s)	1604(w)	
11	1932(s)	1636(w)	
12	1935(s)	1635(w)	
13	1963(s)	1602(w)	
14	1958(s)	1621(w)	
15	1951(s)	1641(w)	
16	2052(s)	1605(w)	
17	2043(s)	1605(w)	
18	2041(s)	1646(w)	

^a Spectra recorded in CHCl₃ as thin films between NaCl plates (s, strong; m, medium; w, weak).

complexes 3–5. All the complexes decompose very quickly when exposed to air in solution, and are also air-sensitive in the solid state, but can be stored under dinitrogen for several weeks. Complex 2 has a single carbonyl band in its IR spectrum at 2081 cm⁻¹ (Table 2), in a similar position to 1, and would be expected to have a similar structure as the acetonitrile complex shown in Fig. 1. Also, the room temperature ${}^{13}C{}^{1}H{}$ -NMR spectrum (CDCl₃) of the most soluble complex

in this series, $[WCl_2(CO)(NPh_3)(\eta^2-EtC_2Et)_2]$ (2), shows alkyne contact carbon resonances at $\delta = 168.98$ and 162.30 ppm, which again indicates [23] that the two 3-hexyne ligands are donating a total of six electrons to the metal in this complex, which enables the complex to obey the effective atomic number rule.

The new organometallic phosphine ligands, $[MI_2(CO)_3{MeC(CH_2PPh_2)_3-P,P'}]$ (M = Mo, W), have been prepared by the reaction of equimolar amounts of

Table 3								
¹ H-NMR	data ^a	for	the	chlorocarbonyl	3-hexyne	tungsten	complexes	(1–18)

Complex	'H-NMR (δ ppm)
1	3.4 (q, 8H, $J_{H-H} = 7.5$ Hz; CH_2 , hexyne), 2.6 (s, 3H, CH_3CN), 1.3 (t, 12H, $J_{H-H} = 7.5$ Hz; CH_3 , hexyne)
2	7.4–6.9 (m, 15H, Ph), 3.35 (q, 8H, $J_{H-H} = 7.5$ Hz; CH_2 , hexyne), 1.3 (t, 12H, $J_{H-H} = 7.5$ Hz; CH_3 , hexyne)
3	7.7–7.1 (m, 15H, Ph), 5.3 (s, 2H, CH_2Cl_2), 3.6–3.1 (mq, 8H, CH_2 , hexyne), 1.3 (t, 6H, $J_{H-H} = 8.5$ Hz; CH_3 , hexyne), 0.9 (t,
	6H, $J_{H-H} = 8.5$ Hz; CH ₃ , hexyne)
4	7.7–7.0 (m, 30H, Ph), 3.25 (q, 8H, $J_{H-H} = 7.5$ Hz; CH_2 , hexyne), 2.25 (s, 6H, CH_2 , tripodal triphos), 1.2 (t, 12H, $J_{H-H} = 7.5$ Hz; CH_3 , hexyne), 0.9 (s, 3H, CH_3 , tripodal triphos)
5	7.7–7.1 (m, 30H, Ph), 3.45 (q, 8H, $J_{H-H} = 8.5$ Hz; CH_2 , hexyne), 2.7–2.2 (m, 6H, CH_2 , tripodal triphos), 1.3 (s, 3H, CH_3 , tripodal triphos), 0.9 (t, 12H, $J_{H-H} = 8.5$ Hz; CH_3 , hexyne)
6	7.6–7.2 (m, 30H, Ph), 3.3 (q, 4H, $J_{H-H} = 8.5$ Hz; CH ₂ , hexyne), 1.1 (t, 6H, $J_{H-H} = 8.5$ Hz; CH ₃ , hexyne)
7	7.8–6.9 (m, 60H, <i>Ph</i>), 3.25 (q, 4H, $J_{H-H} = 7.5$ Hz; CH ₂ , hexyne), 2.25 (s, 12H, CH ₂ , tripodal triphos), 1.2 (t, 6H, $J_{H-H} = 7.5$ Hz; CH ₂ , hexyne), 0.9 (s, 6H, CH ₂ , tripodal triphos)
8	8.0-7.1 (m, 60H, <i>Ph</i>), 3.4 (q, 4H, J_{H-H} = 7.5 Hz; <i>CH</i> ₂ , hexyne), 2.3–2.0 (m, 12H, <i>CH</i> ₂ , tripodal triphos), 1.3 (t, 6H, J_{H-H} = 7.5 Hz; <i>CH</i> ₂ , hexyne), 0.9 (s, 6H, <i>CH</i> ₂ , tripodal triphos)
9	7.6–7.0 (m, 20H, <i>Ph</i>), 4.8 (m, 2H, <i>CH</i> ₂ , dppm), 3.6 (q, 4H, $J_{H-H} = 7.5$ Hz; <i>CH</i> ₂ , hexyne), 1.1 (t, 6H, $J_{H-H} = 7.5$ Hz; <i>CH</i> ₃ , hexyne)
10	7.5–7.0 (m, 20H, <i>Ph</i>), 3.4 (q, 4H, $J_{H-H} = 8.6$ Hz; <i>CH</i> ₂ , ether), 3.3 (q, 4H, $J_{H-H} = 7.5$ Hz; <i>CH</i> ₂ , hexyne), 2.3 (m, 2H, <i>CH</i> ₂ , propane), 2.2 (m, 2H, <i>CH</i> ₂ , propane), 1.9 (m, 2H, <i>CH</i> ₂ , propane), 1.1 (t, 6H, $J_{H-H} = 7.5$ Hz; <i>CH</i> ₃ , hexyne), 0.9 (t, 6H, $L_{H-H} = 8.6$ Hz; <i>CH</i> ₄ , ether)
11	$7.7-6.9$ (m, 20H, Ph), 3.3-2.7 (m, 4H, $J_{H-H} = 8.2$ Hz; CH_2 , hexyne), 2.3 (m, 4H, CH_2PPh_2 , dppb), 1.3 (s, 4H, CH_2 , dppb), 0.9 (t, 6H, L_1 , $\dots = 8.2$ Hz; CH_2 , hexyne)
12	7.7–7.0 (m, 20H, Ph), 3.4 (q, 4H, $J_{H-H} = 7.5$ Hz; CH_2 , hexyne), 2.3 (brm, 4H, CH_2PPh_2 -dpph), 1.4 (brm, 8H, CH_2 , dpph), 0.9 (t, 6H, $J_{H-H} = 7.5$ Hz; CH_2 hexyne)
13	7.8–7.1 (m, 20H, <i>Ph</i>), 3.6 (q, 4H, $J_{H-H} = 8.5$ Hz; <i>CH</i> ₂ , hexyne), 3.3–3.0 (md, 2H, <i>CH</i> = <i>CH</i>), 1.2 (t, 6H, $J_{H-H} = 8.5$ Hz; <i>CH</i> ₂ , hexyne)
14	5.3 (s, 2H, CH_2Cl_2), 4.2–3.9 {dq, 12H, CH_2 , P(OEt) ₃ }, 3.6 (q, 4H, $J_{H-H} = 7.5$ Hz; CH_2 , hexyne), 1.9–1.2 {dt, 18H, CH_3 , P(OEt) ₃ }, 1.1 (t, 6H, $J_{H-H} = 7.5$ Hz; CH_2 , hexyne)
15	4.8-4.5 (m, 6H, CH, isopropyl), 3.6 (q, 4H, $J_{H-H} = 8.5$ Hz; CH ₂ , hexyne), 1.5–1.1 (md, 36H, CH ₃ , isopropyl), 1.2 (t, 6H, $J_{H-H} = 8.5$ Hz; CH ₂ , hexyne)
16	$90-74$ (m, 8H, 22'-bipyridy)) 3.7 (mg, 8H, $J_{11,11} = 8$ Hz; CH_2 , hexyne), 1.2 (t, 12H, $J_{11,11} = 8$ Hz; CH_2 , hexyne)
17	5.3 (s, 2H, CH_2Cl_2), 3.45 (q, 8H, $J_{H-H} = 8.5$ Hz; CH_2 , hexyne), 3.1 (s, 6H, CH_3 , $(Me)_2$ -NCS ₂), 1.2 (t, 12H, $J_{H-H} = 8.5$ Hz; CH_4 hexyne)
18	3.85 (q, 4H, $J_{H-H} = 9$ Hz; CH_2 , $(Et)_2$ -NCS ₂), 3.5 (q, 8H, $J_{H-H} = 8.5$ Hz; CH_2 , hexyne), (t, 6H, $J_{H-H} = 9$ Hz; CH_3 , $(Et)_2$ -NCS ₂), 1.2 (t, 12H, $J_{H-H} = 8.5$ Hz; CH_3 , hexyne)

^a Spectra recorded in CDCl₃ (+25°C) and referenced to SiMe₄ (s, singlet; br, broad; d, doublet; m, multiplet; q, quartet; t, triplet).

[MI₂(CO)₃(NCMe)₂] and MeC(CH₂PPh₂)₃ in CH₂Cl₂ at room temperature [24]. For example, the complex $[WCl_2(CO)(L^{Mo})(\eta^2-EtC_2Et)_2]$ (4) has carbonyl bands at 2075, 2044, 1970 and 1934 cm⁻¹. The band at 2075 cm^{-1} will be due to the carbonyl ligand on the tungdichloro centre, which sten is similar to $[WCl_2(CO)(L^W)(\eta^2-EtC_2Et)_2]$ (5) which has v(CO) at 2079 cm⁻¹. The other three bands are due to the $WI_2(CO)_3$ -unit, which are related to the organometallic phosphine, $[WI_2(CO)_3 \{MeC(CH_2PPh_2)_3 - P, P'\}]$ which has carbonyl stretching bands at 2036, 1958 and 1904 cm⁻¹ [24]. The ³¹P{¹H}-NMR spectrum of 4 has a single resonance at $\delta = 17.59$ ppm due to the two phosphorus atoms of the tripodal triphos attached to the fluxional $MoI_2(CO)_3$ -unit, and at 23.60 ppm due to the third phosphorus atom, which is coordinated to the tungsten bis(alkyne) unit, in a ca. 2:1 intensity ratio. The structure of the seven-coordinate complexes, $[MI_2(CO)_3 \{MeC(CH_2PPh_2)_3 - P, P'\}]$ part of the bimetallic complexes are most likely to be capped octahedral as many complexes of this type have this structure [25–27]. Hence, it is likely that the structure of **4** and **5** will have L^{Mo} or L^{W} replacing the acetonitrile in Fig. 1.

Table 4 $^{13}C{^{1}H}-NMR$ data ^a (δ) for selected chlorocarbonyl 3-hexyne tungsten complexes

Complex	¹³ C (δ ppm)
1	9.50 (s, MeCN), 13.90 (s, CH ₃ , hexyne), 28.99, 29.8 (s, CH ₂ , hexyne), 129.5 (s, C≡N), 162.43, 167.50 (s, C≡C), 193.57 (s, C≡O)
2	13.84 (s, CH ₃ , hexyne), 28.96 (s, CH ₂ , hexyne), 122.68, 124.15, 129.184 (s, Ph), 147.84 (s, C=N), 162.30, 168.98 (s, C=C), 194.4 (s, C=O)
16	14.06, 14.48, 14.87 (s, CH ₃ , hexyne), 27.92, 29.8, 33.72, 35.21 (s, CH ₂ , hexyne), 122.49, 125.15, 126.48, 128.49, 139.27, 139.60, 142.64, 148.01, 150.51, 152.04, 153.34 (s, 2,2'-dipyridyl), 164.23, 168.98 (s, C=C), 189.30 (s, C=O)

 $^{\rm a}\,{\rm Spectra}$ recorded in CDCl_3 (+25°C) and referenced to SiMe_4 (s, singlet).

Table 5

 $^{31}{\rm P}{^{1}H}-{\rm NMR}$ data $^{\rm a}$ (δ) for selected chlorocarbonyl 3-hexyne tungsten complexes

Complex	$^{31}P{^{H}}(\delta ppm)$
3	-25.33 (s, PPh ₃)
4	17.59 (s, 2P, L ^{Mo}), 23.60 (s, 1P, Ph ₂ P–W)
6	-9.71 (s, trans, PPh ₃)
7	17.58 (s, 2P, L ^{Mo}), 30.76 (s, 1P, Ph ₂ P-W)
9	$-23.99, -23.57$ (d, $J_{P-P} = 41.72$ Hz, 2P of dppm)
10	-18.13 , -17.62 (d, $J_{P-P} = 52.22$ Hz, 2P of dppp)
11	-10.39 , -16.77 (d, $J_{P-P} = 55.89$ Hz, 2P of dppb)
12	-16.84 , -10.27 (d, $J_{P-P} = 66.54$ Hz, 2P of dpph)
13	-23.83 , -2.79 (d, $J_{P-P} = 59.83$ Hz, 2P of <i>cis</i> dppeth)
14	100.40 (s, trans), 107.26 (d, cis), 107.83 (d, cis)
	$(J_{\rm P-P} = 57.72 {\rm Hz})$
15	94.80 (s, <i>trans</i>) ($J_{W-P} = 194.75$ Hz)

 a Spectra recorded in CDCl₃ (+25°C) and referenced to 85% H₃PO₄ (s, singlet; d, doublet).

Fig. 2. Proposed structure of $[WCl_2(CO)(PPh_3)_2(\eta^2-EtC_2Et)]$ (6).

Fig. 3. Proposed structure of $[WCl_2(CO)\{Ph_2P(CH_2)_3PPh_2\}(\eta^2-EtC_2Et)]$ (10).

2.3. Reactions of **1** with two equivalents of L{ $L = PPh_3$, L^{Mo} , L^W }, or one equivalent of L_2 { $L_2 = Ph_2P(CH_2)_nPPh_2$ (n = 1, 3, 4 or 6) or cis-Ph_2PCH=CHPPh_2} to give [$WCl_2(CO)L_2(\eta^2-EtC_2Et)$] (6–13)

Treatment of **1** with L_2 { $L_2 = 2PPh_3$, $2L^{Mo}$, $2L^W$, $Ph_2P(CH_2)_nPPh_2$ (n = 1, 3, 4 or 6) or *cis*-Ph_2PCH=CHPPh_2} in CH₂Cl₂ at room temperature, eventually gave the mono(3-hexyne) complexes, [WCl₂(CO)L₂(η^2 -EtC_2Et)] (**6**–13). All the new complexes **6**–13 have been characterised in the normal manner (Tables 1–5). Complex **10** was confirmed as an Et₂O solvate and **12** as a CH₂Cl₂ solvate by repeated elemental analyses and ¹H-NMR spectroscopy. These bis(phosphine) complexes are considerably more stable than **1–5**, and can be stored for several weeks under a nitrogen atmosphere. They are also stable in the air in

the solid state for a few hours. The complexes are much less soluble in chlorinated solvents such as CH_2Cl_2 and $CHCl_3$ compared to 1–5.

The ³¹P{¹H}-NMR spectrum of [WCl₂(CO)-(PPh₃)₂(η^2 -EtC₂Et)] (6), has a single resonance at $\delta = -9.71$ ppm, which suggests *trans*-PPh₃ groups, which would be expected due to the very large ligand cone angle [28] of PPh₃ (145°). This also agrees with all the crystal structures of [MX₂(CO)L₂(η^2 -RC₂R')] (M = Mo, X = Br, L = PEt₃, R = H, R' = Ph [13]; M = W, X = Cl, L = PMe₃ or PMe₂Ph, R = R' = Ph [15]; M = W, X = Cl, L = PMe₃, R = Ph, R' = NH'Bu [17]; M = W, X = I, L = PPh₃, R = R' = Et [20]), which all have *trans*-phosphine ligands. Hence, the most likely structure of complex **6** will be as shown in Fig. 2.

The IR, ¹H- and ³¹P{¹H}-NMR spectroscopic properties of the trimetallic complexes, [WCl₂(CO)(L^{Mo} or $L^{W}_{2}(\eta^{2}-EtC_{2}Et)$] (7 and 8) show the two L^{Mo} or L^{W} moieties are in the same environment, and would also suggest a trans-arrangement of these very large monodentate phosphine ligands. For example, $[WCl_2(CO)(L^{Mo})_2(\eta^2-EtC_2Et)]$ (7) has carbonyl bands at v(CO) = 2044, 1972, 1938, 1904 cm⁻¹; the band at $\{v(CO) = 1972 \text{ cm}^{-1}\}$ is likely to be due to the WCl₂(CO)-unit, and the bands v(CO) = 2044, 1938 and 1904 cm⁻¹ due to the MoI₂(CO)₃-unit in its IR spectrum (Table 2). The ³¹P{¹H}-NMR spectrum (CDCl₃, +25°C) of 7 has resonances at $\delta = 17.58$ and 30.76 ppm in a 2:1 intensity ratio. The resonance at $\delta = 17.58$ is most likely to be due to the two phosphorus atoms on the fluxional organomolybdenum phosphine ligand, $[MoI_2(CO)_3 \{MeC(CH_2PPh_2)_3 - P, P'\}],$ which has a resonance at $\delta = 12.63$ ppm at room temperature for the two coordinated phosphorus atoms [24]. The lower field resonance at $\delta = 30.76$ ppm will be due to the *trans*phosphorus atoms attached to the WCl₂(CO)-centre.

The bidentate phosphine ligand complexes $[WCl_2(CO)L_2(\eta^2-EtC_2Et)] \{L_2 = Ph_2P(CH_2)_nPPh_2; n =$ 1, 3, 4 or 6, or $cis-Ph_2PCH=CHPPh_2$ } (9–13), are related to, for example, the diiodo complexes $[WI_2(CO){Ph_2P(CH_2)_nPPh_2}(n^2-EtC_2Et)]$ (n = 1, 3, 4 or 6), which has been structurally characterised for n = 3[20]. In view of the similar spectroscopic properties of $[WX_2(CO){Ph_2P(CH_2)_3PPh_2}(\eta^2-EtC_2Et)] \{X = Cl (10),$ $v(CO) = 1944 \text{ cm}^{-1}$; X = I [20], $v(CO) = 1942 \text{ cm}^{-1}$ }, ³¹P{¹H}-NMR (for X = Cl, $\delta = -18.13$ and -17.62ppm, for X = I [20], $\delta = -23.73$ and -36.21 ppm}, it is likely that they will have a similar structure as shown in Fig. 3.

2.4. Reactions of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1) with two equivalents of $P(OR)_3$ (R = Et, ⁱPr) to give $[WCl_2(CO)\{P(OR)_3\}_2(\eta^2-EtC_2Et)]$ (14 and 15)

Reaction of **1** with two equivalents of $P(OR)_3$ (R = Et, ^{*i*}Pr) in diethyl ether gives the expected bis(phos-

phite) complexes, $[WCl_2(CO){P(OR)_3}_2(\eta^2-EtC_2Et)]$ (14 and 15) in high yield. These complexes are very soluble in chlorinated solvents such as CH₂Cl₂ and CHCl₃, and are also soluble in diethyl ether. These complexes have been fully characterised by elemental analysis (Table 1) and spectroscopic methods (see Tables 2-5). Complex 14 was confirmed as a CH₂Cl₂ solvate by repeated elemental analyses and ¹H-NMR spectroscopy. They are very air-sensitive in solution when exposed to air, but can be stored for a few hours in the solid state under dinitrogen. Complexes 14 and 15 are the most soluble complexes described in this paper. The synthesis and crystallographic characterisation of a large series of diiodo bis(phosphite) complexes have been described of the type, cis-[WI₂(CO){P(OMe)₃}₂(η^2 -MeC₂Me)] [6], trans-[MoI₂(CO){P(OEt)₃}₂(η^2 -MeC₂Me)] [29] and trans-[MI₂(CO){P(O'Pr)₃}₂(η^2 -EtC₂Et)] (M = Mo or W) [30]. The ${}^{31}P{}^{1}H$ -NMR spectrum of 14 shows a singlet resonance at $\delta = 100.40$ ppm, which is due to the *trans*-isomer, and two doublets at $\delta = 107.26$ and 107.83 ppm, due to the *cis*-isomer ($J_{P-P} = 57.72$ Hz) (the ratio of cis- to trans-isomers is approximately 40:60). Whereas, for $R = {}^{i}Pr$ (15) only a single resonance at $\delta = 94.80$ ppm ($J_{W-P} = 194.75$ Hz) due to the trans-isomer was observed. The proposed structures of the cis- and trans-isomers of 14 are shown in Fig. 4(a)

Fig. 4. Proposed structure of both the *cis*- (a) and *trans*- (b) isomers of $[WCl_2(CO){P(OR)_3}_2(\eta^2-EtC_2Et)]$ {(14) and Pr (15)}.

Fig. 5. Proposed structure of [WCl(CO)(bipy)(η²-EtC₂Et)₂]Cl (16).

and (b), respectively, which correspond with the crystal structures of related diiodo complexes [6,29,30].

2.5. Reaction of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1) with 2,2'-bipyridyl (bipy) to give $[WCl(CO)(bipy)(\eta^2-EtC_2Et)_2]Cl$ (16)

Treatment of equimolar quantities of $[WCl_2(CO)-(NCMe)(\eta^2-EtC_2Et)_2]$ and 2,2'-bipyridyl (bipy) in CH_2Cl_2 at room temperature affords the cationic complex, $[WCl(CO)(bipy)(\eta^2-EtC_2Et)_2]Cl$ (16) in high yield. Complex 16 has been characterised in the normal manner (see Tables 1–4), and is closely related to the crystallographically characterised complexes $[WI(CO)-(bipy)(\eta^2-MeC_2Me)_2]I$ [4] and $[WCl(CO)(bipy)(\eta^2-MeC_2Me)_2]I$ [4] and $[WCl(CO)(bipy)(\eta^2-MeC_2Me)_2]I$ [12], and both have *cis*- and parallel 2-butyne ligands, which are in the equatorial plane with the 2,2'-bipyridine ligand, with the carbonyl and halide ligands occupying the axial sites.

In view of the very similar spectroscopic properties of **16** to the crystallographically characterised complexes [WI(CO)(bipy)(η^2 -MeC₂Me)₂]I [4] and [WCl(CO)-(bipy)(η^2 -MeC₂Me)₂]I [12], it is likely to have the same structure as shown in Fig. 5. The ¹³C{¹H}-NMR spectrum (Table 4) of **16** has alkyne contact carbon resonances at $\delta = 164.23$ and 168.98 ppm due to the two alkyne ligands donating a total of six electrons to the tungsten, which also enables the complex to obey the effective atomic number rule [23].

2.6. Reactions of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1) with one equivalent of NaS_2CNR_2 · $3H_2O$ (R = Me, Et) to give $[WCl(CO)(S_2CNR_2)(\eta^2-EtC_2Et)_2]$ (17 and 18)

Reaction of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ with one equivalent of $NaS_2CNR_2 \cdot 3H_2O$ (R = Me, Et) in CH_2Cl_2 at room temperature gives the complexes, $[WCl(CO)(S_2CNR_2)(\eta^2-EtC_2Et)_2]$ (17 and 18) in high yield. These fully characterised complexes (Tables 1–4) are very similar to the crystallographically characterised complex, $[WI(CO)(S_2CNC_4H_8)(\eta^2-MeC_2Me)_2]$ [7], previously described. Complex 17 was confirmed as a CH_2Cl_2 solvate by repeated elemental analyses and ¹H-NMR spectroscopy. The IR and NMR spectral properties of 17 and 18 are similar to the complex, $[WI(CO)(S_2CNC_4H_8)(\eta^2-MeC_2Me)_2]$, and hence they are likely to have a similar structure as shown in Fig. 6.

In conclusion, the synthesis of an unstable dichloro bis(alkyne) complex, $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1) has been described, and its reactions with a wide range of neutral and anionic donor ligands to give a series of more stable products has been described, as shown in Scheme 1.

Fig. 6. Proposed structure of $[WCl(CO)(S_2CNR_2)(\eta^2-EtC_2Et)_2]$ {R = Me (17); R = Et (18)}.

3. Experimental

3.1. Reagents and general techniques

The reactions described in this research were carried out using standard vacuum/Schlenk line techniques. The starting material, $[WCl_2(CO)_3(NCMe)_2]$, was prepared in situ by reacting $[WI_2(CO)_3(NCMe)_2]$ with two equivalents of NaCl in acetone, as previously described [19]. The solvent CH_2Cl_2 was dried over calcium hydride and diethyl ether was dried over sodium wire. All chemicals used were purchased from commercial sources.

Elemental analyses (C, H and N) were determined using a Carlo Erba Elemental Analyser MOD1108 (using helium as the carrier gas). IR spectra were recorded as thin CHCl₃ films on a Perkin–Elmer FT1600 series IR spectrophotometer. ¹H-, ¹³C{¹H}and ³¹P{¹H}-NMR spectra were recorded on a Bruker AC 250 MHz NMR spectrometer, and spectra were referenced to SiMe₄ (¹H and ¹³C) or 85% H₃PO₄ (³¹P).

3.2. Preparation of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1)

To a stirred solution of $[WCl_2(CO)_3(NCMe)_2]$ {prepared in situ by reaction of $[WI_2(CO)_3(NCMe)_2]$ (0.5 g, 0.82 mmol) with two equivalents of NaCl (0.096 g, 1.6 mmol)} (0.5 g, 1.2 mmol) in CH₂Cl₂ (25 cm³) was added excess of EtC₂Et (0.19 g, 0.27 ml, 2.3 mmol). Filtration and removal of solvent in vacuo after 24 h, gave the green oily product of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1), which was recrystallised several times from CH₂Cl₂-Et₂O at -17° C (yield of product = 0.23 g, 39%).

3.3. Preparation of $[WCl_2(CO)(NPh_3)(\eta^2-EtC_2Et)_2]$ (2)

To a stirred solution of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1) (0.2 g, 0.41 mmol) in CH_2Cl_2 (25 cm³) was added NPh₃ (0.10 g, 0.40 mmol). Filtration and re-

moval of solvent in vacuo after 24 h, gave the green powder $[WCl_2(CO)(NPh_3)(\eta^2-EtC_2Et)_2]$ (2), which was recrystallised from $CH_2Cl_2-Et_2O$ at $-17^{\circ}C$ (yield of pure product = 0.18 g, 64%).

Similar reactions of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ with one equivalent of L in CH_2Cl_2 at room temperature (r.t.) gave the complexes $[WCl_2(CO)(L)(\eta^2-EtC_2Et)_2]$ {L = PPh₂ (**3**), L^{Mo} (**4**), L^W (**5**)}. For physical and analytical data see Table 1.

3.4. Preparation of $[WCl_2(CO)(PPh_3)_2(\eta^2-EtC_2Et)]$ (6)

To a stirred solution of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1) (0.1 g, 0.20 mmol) in CH₂Cl₂ (25 cm³) was added PPh₃ (0.10 g, 0.38 mmol). Filtration, and removal of solvent in vacuo after 24 h, gave the green powder of $[WCl_2(CO)(PPh_3)_2(\eta^2-EtC_2Et)]$ (6), which was recrystallised from CH₂Cl₂/Et₂O at $-17^{\circ}C$ (yield of pure product = 0.08 g, 41%).

Similar reactions of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1) with two equivalents of L in CH_2Cl_2 at r.t. gave the complexes, $[WCl_2(CO)(L)_2(\eta^2-EtC_2Et)]$ {L = L^{Mo} (7), L^W (8)}. For physical and analytical data see Table 1.

3.5. Preparation of $[WCl_2(CO)(dppm)(\eta^2-EtC_2Et)]$ (9)

To a stirred solution of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1) (0.1 g, 0.20 mmol) in CH₂Cl₂ (25 cm³) at r.t. was added Ph₂P(CH₂)PPh₂ (0.078 g, 0.20 mmol). Filtration and removal of solvent in vacuo after 24 h, gave the green powder, $[WCl_2(CO)(dppm)(\eta^2-EtC_2Et)]$ (9), which was recrystallised from CH₂Cl₂-Et₂O at $-17^{\circ}C$ (yield of pure product = 0.09 g, 53%).

Similar reactions of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1) with one equivalent of L[^]L {L[^]L = Ph_2P(CH_2)_n-PPh_2, n = 3 (10), n = 4 (11), n = 6 (12), L[^]L = cis-Ph_2PCH=CHPPh_2 (13)} in CH₂Cl₂ at r.t. gave the complexes, $[WCl_2(CO)(L^{^}L)(\eta^2-EtC_2Et)]$ (10–13). For physical and analytical data see Table 1.

3.6. Preparation of $[WCl_2(CO){P(OEt)_3}_2(\eta^2-EtC_2Et)]$ (14)

To a stirred solution of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1) (0.1 g, 0.20 mmol) in Et₂O (25 cm³) was added P(OEt)₃ (0.068 g, 0.007 ml, 0.40 mmol). Filtration and removal of solvent in vacuo after 24 h, gave the green powder of $[WCl_2(CO){P(OEt)_3}_2(\eta^2-EtC_2Et)]$ (14), which was recrystallised from $CH_2Cl_2-Et_2O$ at $-17^{\circ}C$ (yield of pure product = 0.09 g, 63%).

A similar reaction of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1) with two equivalents of $P(O'Pr)_3$ in Et_2O at r.t. gave the complex, $[WCl_2(CO)\{P(O'Pr)_3\}_2(\eta^2-EtC_2Et)]$ (15). For physical and analytical data see Table 1.

3.7. Preparation of $[WCl(CO)(bipy)(\eta^2-EtC_2Et)_2]Cl$ (16)

To a stirred solution of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1) (0.15 g, 0.30 mmol) in CH₂Cl₂ (25 cm³) was added bipy (0.045 g, 0.28 mmol). Filtration and removal of solvent in vacuo after 24 h, gave the green powder, $[WCl(CO)(bipy)(\eta^2-EtC_2Et)_2]Cl$ (16), which was recrystallised from CH₂Cl₂-Et₂O at -17°C (yield of pure product = 0.09 g, 49%).

3.8. Preparation of $[WCl(CO)(S_2CNMe_2)(\eta^2-EtC_2Et)_2]$ (17)

To a stirred solution of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1) (0.15 g, 0.3 mmol) in CH_2Cl_2 (25 cm³) was added NaS₂CNMe₂·3H₂O (0.023 g, 0.3 mmol). Filtration and removal of solvent in vacuo after 24 h, gave the green powder $[WCl(CO)(S_2CNMe_2)(\eta^2-EtC_2Et)_2]$ (17), which was recrystallised from $CH_2Cl_2-Et_2O$ at $-17^{\circ}C$ (yield of pure product = 0.07 g, 39%).

A similar reaction of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]$ (1) with one equivalent of $NaS_2CNEt_2\cdot 3H_2O$ in CH_2Cl_2 at r.t. gave the complex $[WCl(CO)-(S_2CNEt_2)(\eta^2-EtC_2Et)_2]$ (18). For physical and analytical data see Table 1.

Acknowledgements

M.Al.J. thanks the Saudi Arabian Government for support.

References

- (a) E.M. Armstrong, P.K. Baker, S.G. Fraser, J. Chem. Res. (S) (1988) 52. (b) E.M. Armstrong, P.K. Baker, S.G. Fraser, J. Chem. Res. (M) (1988) 410.
- [2] E.M. Armstrong, P.K. Baker, M.G.B. Drew, Organometallics 7 (1988) 319.
- [3] P.K. Baker, M.G.B. Drew, S. Edge, S.D. Ridyard, J. Organomet. Chem. 409 (1991) 207.

- [4] P.K. Baker, E.M. Armstrong, M.G.B. Drew, Inorg. Chem. 27 (1988) 2287.
- [5] E.M. Armstrong, P.K. Baker, M.E. Harman, M.B. Hursthouse, J. Chem. Soc. Dalton Trans. (1989) 295.
- [6] P.K. Baker, E.M. Armstrong, M.G.B. Drew, Inorg. Chem. 28 (1989) 2406.
- [7] E.M. Armstrong, P.K. Baker, K.R. Flower, M.G.B. Drew, J. Chem. Soc. Dalton Trans. (1990) 2535.
- [8] P.K. Baker, Adv. Organomet. Chem. 40 (1996) 45 (and references cited therein).
- [9] P.K. Baker, Chem. Soc. Rev. 27 (1998) 125 (and references cited therein).
- [10] P.K. Baker, D.J. Muldoon, A.J. Lavery, A. Shawcross, Polyhedron 13 (1994) 2915.
- [11] P.K. Baker, A. Bury, K.R. Flower, Polyhedron 8 (1989) 2587.
- [12] (a) P.K. Baker, M.G.B. Drew, M.M. Meehan, H.K. Patel, A. White, J. Chem. Res. (S) (1998) 379. (b) P.K. Baker, M.G.B. Drew, M.M. Meehan, H.K. Patel, A. White, J. Chem. Res. (M) (1998) 1461.
- [13] P.B. Winston, S.J.N. Burgmayer, J.L. Templeton, Organometallics 5 (1986) 1707.
- [14] B.J. Brisdon, A.G.W. Hodson, M.F. Mahon, K.C. Molloy, R.A. Walton, Inorg. Chem. 29 (1990) 2701.
- [15] G.R. Clark, A.J. Nielson, A.D. Rae, C.E.F. Rickard, J. Chem. Soc. Dalton Trans. (1994) 1783.
- [16] A. Mayr, C.M. Bastos, J. Am. Chem. Soc. 112 (1990) 7797.
- [17] A. Mayr, C.M. Bastos, R.T. Chang, J.X. Haberman, K.S. Robinson, D.A. Belle-Oudry, Angew. Chem. Int. Ed. Engl. 31 (1992) 747.
- [18] A. Mayr, K.S. Lee, M.A. Kjelsberg, D. Van Engen, J. Am. Chem. Soc. 108 (1986) 6079.
- [19] M. Al-Jahdali, P.K. Baker, A.J. Lavery, M.M. Meehan, D.J. Muldoon, J. Mol. Catal. 159 (2000) 51.
- [20] M. Al-Jahdali, P.K. Baker, M.G.B. Drew, Z. Naturforsch. B 54 (1999) 171.
- [21] P.K. Baker, M.E. Harman, M.B. Hursthouse, A.J. Lavery, K.M.A. Malik, D.J. Muldoon, A. Shawcross, J. Organomet. Chem. 484 (1994) 169.
- [22] M.G.B. Drew, P.K. Baker, D.J. Muldoon, A.J. Lavery, A. Shawcross, Gazz. Chim. Ital. 126 (1996) 625.
- [23] J.L. Templeton, B.C. Ward, J. Am. Chem. Soc. 102 (1980) 3288.
- [24] M. Al-Jahdali, P.K. Baker, M.M. Meehan, J. Chem. Soc. Dalton Trans., submitted for publication.
- [25] M.G.B. Drew, Prog. Inorg. Chem. 23 (1977) 67 (and references cited therein).
- [26] M. Melník, P. Sharrock, Coord. Chem. Rev. 65 (1985) 49 (and references cited therein).
- [27] C.W. Haigh, P.K. Baker, Polyhedron 13 (1994) 417.
- [28] C.A. Tolman, Chem. Rev. 77 (1977) 313.
- [29] P.K. Baker, M.G.B. Drew, D.S. Evans, A.W. Johans, M.M. Meehan, J. Chem. Soc. Dalton Trans. (1999) 2541.
- [30] M. Al-Jahdali, P.K. Baker, M.G.B. Drew, J. Organomet. Chem. 622 (2001) 228.